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S
ON FIXED-INTERVAL MINDIW SYMBOL EnOR PROBABILITY DErECION

I
Consider a data communications model in which the observed process isI

r(t) = S(tb) + n(t) -MT < t < (M+2)T (1)

where n(t) is zero-mean white Gaussian noise (spectral height of N0 /2), T is

the symbol interval duration and S(t,b) is a linearly modulated [-user

information-bearing signal which can be expressed asI
M K

S(tb) bk) sk(t - iT -k )  (2)
i=-M k=l

where

and bk(i) 6 A, sk(t) (assumed to be zero outside a finite interval of positive

real line) and Tk e [OT) are the i th bit, the signal waveform and the delay

(modulo T with respect to an arbitrary reference) respectively of the kth

user. It is easy to see that the usual models for asynchronous multiple-

access communications [11 and for PAM subject to finite-length intersymbol

interference [21 are encompassed by the above model.

IIn this report, we present a forward-backward algorithm that offers MAP

symbol-by-symbol detection upon observation of the whole received process,

i.e., it solves for

bk(i) e arg max P[bk(i) - a j r(t), -MT J t < (M+2)T] (3)
af.A

k = 1 .... K

i - -M......M.

or equivalently
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bk(i) e arg max exp[ - -L (b)] (4)
afA b N

s.t. bn(i)=a

'where

M M M
a(b) = 2 Y bT(i)y(i) - I I bT(i)H(i-j)b(j) , (5)

a i=-M i=-M j=-M

g and y(i) = [yl(i), ... , y(i)]T is the set of outputs of the K matched filters

corresponding to the ith symbol,. i.e..I
= r(t) sk(t- iT - Tk) dt, (6)

-k+iT

5 and the K x K correlation matrices H(i) are defined by

Hkj(i) = sk(t) s(t + iT + k- vj) dt. (7)

Because of the assumed finite length of the signals sk(t), there exists an

5 integer m such that

H(i) 2 for IiI > m. (8)

IThe set S = AKx m will be referred to as the state-space, and the subsets

of admissible preceding and next states for a given a e S are denoted by1

i+ l  ,  , . Accession For
P(O) - (I Q S, S.t. X ( m NTIS GRA&I

DTIC TABilUnannounced CI
N(u) - (x e S. s.t. xi  = i = 1 .... M-1i. U utioi on 0

By-
Di3tritutton/

Availability Codes
10i denotes the ith column of the matrix a. Avail and/or

Dist Special
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If a e S and z f AX then define the scalar,

0m
V(O,z) = exp-0 zT(H(0) z + 2 1 H(m - j + 1) J)]I

N j=l

Equipped with the above definitions, we can state our solution to (4):

Alaorithm

arg max exp[ a(b)] =

s.t. bk(i)=a

arg max Z Fi(a) Bi(a) (9)g aeA aeS
S.t. OCk--a

where Fk(.) and Bk(.) are defined through the forward and backward recursions:

Fk(a) = exp[ -Ly Tk)om] - Fkl(x) V(x,am)  (10)k0 xeP(a)

I Bkl(a) - E" Bk(x) V(a,x) exp[ oYT(k)xm ]  (11)
xeN~a 0

and the initial conditions:

I p -0 m iT(iT j)aj], k < m (12a)00~) - exp[ R (2 -r yTii a H o,

0 i=m--k+l i=m-k+l j =m-k+lI
% = 1. (12b)

Proof

f First, organizing the terms in the sum of (4), we have that

exp[y b0- (b)] =k
est. bk(i)=a



I
4i

Gexp[ q) 1 (13)

s.t. a kc a b-W MIM( ,i)

where we have used the notation

I W'-J(a,k) = [b(i), ... , b(j)) s.t. b(n) e AK for n =i....j

and [b(k-m+l) ... b(k)] = a),I
i.e., the set of all symbol subsequences, whose components k-m+l, .... k coin-

cide with a given state a e S.

gUsing the fact that H(i) = HT(-i) (see (7)), it is straightforward to

check that

!
M M M i-1
Z I bT(i) H(i-j) b(j) = I bT(i)H(0) b(i) + 2 - H(i-j) b(j)],

i=-M j--M i=-M j-M

g hence we have

exp[ D(b)] =

I 0bMIM( , i)

N T k-1
exp[ Z b b(k)(y(k) - 1-H(0)b(k) + I H(k-j) b(j))]

b MVM(ca, i) k-M j-M

enp[ 2 M 1 k-i

I kO K b (k)(y(k) - 1 H(O)b(k) + 1"  B(k-j) b(j))] "I ewKK(a, l)

N 0 k--M j -M

ixp 2 M Tk-1

I:exp[ bT(k)(y(k) - 1 H(0)b(k) + Z H(k-j) b(j))] (14)
NO k-i+l 2 j-M

I ti+lM(oio

I where the last equality follows from property (8). It remains to show that

!
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both terms in the right hand side of (14) correspond to Fi(a) and Bi(a)

I respectively, as defined by (10) - (12). To that end, we can write

2 bT(k)(y(k) - ]H(0)b(k) + 1"  H(k-j) b(j))] =

WM 0,) N0 k=-M 2j =-M

"(y(i) - H(O) am + 1: H(m-j+l)xJ)]
x6P(a) w-M,i-1 (x,i-1) 0 j=

I i- T k-i
expER NkI bT(k)(y(k) b + F H(k-j)b(j))]

Nk-M j -M

and the recursive expression (10) follows (for m ( k).

IAnalogously,
M i, ,(k)(y(k)- 1-H(o)b(k) + k-1

wi-M(O5 i-l) 0 k=i j=-M

IN exp[ L xm(y(i) - '! H(0) I + E H(--j+l)aJ) I
xeN(a) W i+l.M (1  N 0 2 j=1

2 M 1 k-1

exp[ s Y bT1 k b 1 H(0)b(k) + 7- H(k-j)b(j))]
0 kji+1 j=-M

Hence, comparing with (11) and (12b) we can identify

i 2 M T(k)(y(k) - k-1
i()ep Z b H(O)b(k) + 7- H(k-

0 k=i+l j =-M
I j)b(j))] W~D(i

and the claim is proved.I
The forward-backward structure of the above fixed-interval symbol-by-

symbol optimum detection algorithm resembles the well-known solution for

fixed-interval smoothing (e.g. (3]), the main difference being the indepen-

I dence of the forward and backward recursions. In fact, the existence of such

I
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algorithms for Markovian decision problems can be traced back to the work by

I Chan and Hancock (4], and is concisely explained in Forney (5, App.]; see

g also [6] for a recent application of this idea.

Of particular interest here is the work by Hayes et al. [7], in which

they propose an algorithm for solving the minimum symbol error probability

priblem for our same model (in the special case of 1 user). In this algo-

rithm, the likelihood of every possible value of each symbol is computed by

f deleting all the trellis states that are not congruent with such value and

then running a forward recursion similar to (10). Noticing that at every step

i the recursion is common for future symbols, the number of computations can be

halved. A comparison between the computational complexities of the algorithm

by Hayes et al. and the one proposed here seems in order.

I The quantities expL yT(k).z], and Vaz) with a L S and z C AK , are
0 0 e

common to both algorithms; the fiist can be computed efficiently digitally or

analogically for every input vector and for every symbol combination and the

set of second quantities can be precomputed and stored since it does not

depend on the data. In any case, the time and space costs incurred in the

I above computations should be added to those that follow.

I Employing the notation, L - JAIK , every step of the forward and backward

recursions entails per state: L + 1 and 2L multiplications, respectively, and

L - 1 additions, i.e., (3L + 1)Lm multiplications and (2L - 2)Lm  additions.

The final product of the forward and backward quantities requires one multi-

plication per state, i.e., Lm multiplications per step, and the computation of

the likelihood for each symbol value requires Lm/IAI - 1 additions, i.e., Lm -

1AI per step.I
I
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If the algorithm by Hayes et al. is implemented with a fixed delay of

I N2 , then every step of the recursion therein is analogous to our forward

recursion and requires L - 1 additions and L + 1 multiplications, per state.

However, the state trellis is different for each symbol, and the number of

additions and multiplications per state must be multiplied by (1 + M2L).

Finally, every possible symbol value requires Lm - 1 additions in order to

I obtain its likelihood. ([7, step 3, p. 1551). The final step of both algo-

rithms is to choose the largest of IAI quantities per symbol.

Regarding global storage requirements, our algorithm needs to store the

entire sequences of values of Fi(a) and/or Bi(a), i.e., 2MLm quantities. On

the other hand, the algorithm in [7] requires the storage of Lm(l + M2L)

values. Summarizing, both algorithms have the following complexities:

!
g HAYES et al. FORWARD-BACKWARD

ADDITIONS Lm+l(M 2L - M2 + 1) - 1 Lm(2L - 1) - IAI

(per symbol)

!
MULTIPLICATIONS Lm(l + M2L)(L + 1) L(3L + 2)

I (per symbol)

I
STORAGE Lm(l + M2L) L(2M)I

I
I



The key parameter in the comparison of both algorithms is L; if L is

large (as is the case in multi-access communications with more than 3 or 4

users) then the forward-backward algorithm offers computational savings of the

order of L 2 ; if L is small (e.g., binary single-user communications) then the

computational effort of the algorithm it [7] is roughly that of the forward-

backward algorithm times M2. Note incidentally that since the forward and

backward recursions are independent, there exists, obviously, the possibility

of implementing them in parallel.

With respect to the storage requirements, the comparison depends on the

* relative values of the fixed delay M2 and M, the fixed length of the data

record processed in batch. In general, the choice of M for the fixed interval

algorithm will be dictated by the storage capabilities, the allowable decision

delay, and the performance degradation due to the partitioning of the data

record. It is not unreasonable to expect that comparable levels of degrada-

tion will be attained by algorithms whose respective fixed delay M2 and (half

of) fixed length M coincide. Notice that minimum symbol error probability

detection can only be justified as an alternative to optimum sequence detec-

tion (via Viterbi algorithm) in low signal-to-noise ratio situations since

otherwise the optimum decisions according to both criteria do not differ

appreciably. The relevance of this point stems from the fact that the delay

or data record length required for achieving a given degree of performance

degradation increase as the signal-to-noise ratio decreases.

I
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